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ABSTRACT
Although historically the intra-aortic balloon pump has been the only mechanical circulatory support device available to

clinicians, a number of new devices have become commercially available and have entered clinical practice. These include

axialflowpumps, such as Impella�; left atrial to femoral artery bypass pumps, specifically the TandemHeart; and newdevices

for institution of extracorporeal membrane oxygenation. These devices differ significantly in their hemodynamic effects,

insertion, monitoring, and clinical applicability. This document reviews the physiologic impact on the circulation of these

devices and their use in specific clinical situations. These situations include patients undergoing high-risk percutaneous

coronary intervention, those presenting with cardiogenic shock, and acute decompensated heart failure. Specialized uses

for right-sided support and in pediatric populations are discussed and the clinical utility of mechanical circulatory support

devices is reviewed, as are the American College of Cardiology/American Heart Association clinical practice guidelines.
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INTRODUCTION

Percutaneous hemodynamic support has historically
been limited to the intra-aortic balloon pump (IABP)
or extracorporeal bypass with membrane oxygenator
(ECMO) (1–3). Although the IABP is widely available,
limitations include modest hemodynamic support or
myocardial protection; ECMO can provide full hemody-
namic support but is limited by complexity and need for
perfusion expertise and is rarely used in the catheteri-
zation laboratory environment. These limitations have
spurred development of alternative percutaneous me-
chanical circulatory support (MCS) devices with the po-
tential to provide greater cardiac and systemic support
and reduce morbidity and mortality among high-risk
patient subsets (1).

In parallel, cardiovascular practice has seen rapid
growth in cohorts that may benefit from the use of such
devices (4). These include patients with chronic systolic
dysfunction and acute decompensated heart failure
(ADHF), those in whom high-risk multivessel percuta-
neous coronary intervention (PCI) or other procedures
may be required, those with acute cardiogenic shock, and
those with residual or concomitant cardiac dysfunction
from myocardial infarction despite reperfusion. Among
patients with cardiogenic shock, in particular, acute im-
plantation of surgical MCS remains associated with rela-
tively poor outcomes. Accordingly, there has been a
rise in the development and use of percutaneous devices
over the past decade for both acute (e.g., acute myo-
cardial infarction (MI) complicated by cardiogenic shock
or mechanical complications) and acute on chronic
(e.g., high risk (HR) PCI) indications.

Percutaneous MCS devices have become an integral
component of the cardiovascular therapeutic armamen-
tarium. The 2011 American College of Cardiology/American
Heart Association/Society for Cardiovascular Angiog-
raphy and Interventions (ACC/AHA/SCAI) Guideline
for Percutaneous Coronary Intervention recommends
consideration of percutaneousMCS in two clinical settings:
a) as an adjunct to HR PCI (Class IIb) and b) for cardiogenic
shock in patients presenting with ST-elevation myocardial
infarction (Class Ib) (5). However, no additional guidance
is provided. The goal of this document is to provide such
guidance on the appropriate clinical settings for MCS
utilization and to review the available devices, treatment
strategies, practical recommendations for use, gaps in
knowledge, and evolving practice.

CLINICAL SETTINGS AND

HEMODYNAMIC SUBSTRATES

Potential benefits of MCS include the ability to: 1) main-
tain vital organ perfusion, thereby preventing systemic
: http://content.onlinejacc.org/ on 09/23/2015
shock syndrome, 2) reduce intracardiac filling pressures,
thereby reducing congestion and/or pulmonary edema,
3) reduce left ventricular volumes, wall stress, and
myocardial oxygen consumption, 4) augment coronary
perfusion, 5) support the circulation during complex inter-
ventional and electrophysiologic procedures, and, theo-
retically, 6) limit infarct size. As new MCS devices become
available, several specific patient populations likely to
benefit from this therapy can be identified. These include
patients undergoing high-risk PCI (HR-PCI), and those
with large acute myocardial infarctions (AMI), acute de-
compensated heart failure (ADHF), and cardiogenic shock.

The hemodynamic condition of the left ventricle (LV)
in these populations is illustrated by the pressure-volume
(PV) loop (Figure 1), which provides information about
contractile function, relaxation properties, stroke vol-
ume, cardiac work, and myocardial oxygen consumption
(6–10). The anticipated effect with available support de-
vices is shown in Figure 2. Each clinical syndrome pre-
sents a unique set of hemodynamic variables where
cardiac function and myocardial oxygen supply or de-
mand is compromised. For example, in AMI, patients may
present with reduced LV contractile function, acute dia-
stolic dysfunction, elevated LV end-diastolic volume
(LVEDV) and pressure (LVEDP), and increased LV work
(oxygen demand) in addition to diminished coronary
blood flow. In cardiogenic shock LV contractile function is
severely reduced with significantly increased LVEDV and
LVEDP, markedly reduced stroke volume, but increased
myocardial oxygen demand; coronary blood flow may also
be impaired by hypotension and elevated wall stress.
These pressure-volume loops provide hemodynamic
characterization only of the LV and do not provide in-
formation on right ventricular function or extra-cardiac
problems that may be impacted by MCS such as sys-
temic hypoperfusion of the cerebral, visceral, renal, and
peripheral arteries.

HR PCI

Each aspect of PCI from guide catheter engagement to
coronary wiring, balloon inflation, and stent deployment
incurs a potential risk of damage to the coronary vascu-
lature with impairment of myocardial perfusion, either
transient or persistent. At present, no single, unifying
definition for HR-PCI exists but variables that contribute
to elevated risk during PCI have been well defined and
can be categorized into three major groups: 1) patient
specific, 2) lesion specific, and 3) clinical presentation
specific.

Patient-specific variables include increased age, im-
paired left ventricular function, symptoms of heart fail-
ure, diabetes mellitus, chronic kidney disease, prior
myocardial infarction, multivessel or left main disease,



FIGURE 1 Normal and Abnormal Pressure Volume Loops

Each pressure volume (PV) loop represents one cardiac cycle (A). Beginning at the end of isovolumic relaxation (Point 1), LV volume increases during diastole

(Phase 1 to 2). At end-diastole (Point 2), LV volume is maximal and isovolumic contraction (Phase 2 to 3) begins. At the peak of isovolume contraction, LV

pressure exceeds aortic pressure and blood begins to eject from the LV into the aorta (Point 3). During this systolic ejection phase, LV volume decreases until

aortic pressure exceeds LV pressure and the aortic valve closes, which is known as the end-systolic pressure-volume point (ESPV) (Point 4). Stroke volume

(SV) is represented by the width of the PV loop as the volume difference between end-systolic and end-diastolic volumes (Points 1 and 2). The shaded area

within the loop represents stroke work. Load-independent LV contractility, also known as Emax, is defined as the maximal slope of the ESPV point under

various loading conditions, known as the ESPV relationship (ESPVR). Effective arterial elastance (Ea) is a component of LV after- load and is defined as the

ratio of end-systolic pressure and stroke volume. Under steady state conditions, optimal LV pump efficiency occurs when the ratio of Ea:Emax approaches 1.

(B) Representative PV loop in AMI (blue loop). LV contractility (Emax) is reduced; LV pressure, SV, and LV stroke work may be unchanged or reduced; and

LVEDP is increased. (C) Representative PV loop in cardiogenic shock (gray loop). Emax is severely reduced; LVEDV and LVEDP are increased; and SV is reduced.
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and peripheral arterial disease (11–18). Lesion-specific
variables encompass anatomic characteristics such as
left main stenosis, bifurcation disease, saphenous vein
grafts, ostial stenoses, heavily calcified lesions, and
chronic total occlusions (19–23). Lesions that supply a
large territory (including a last patent conduit, left
main disease, or critical 3-vessel disease) also increase
risk should dissection or occlusion occur during PCI—
particularly in combination with poor ventricular func-
tion. Finally, the clinical setting, such as acute coronary
syndrome or cardiogenic shock, can increase the risk of
an adverse event with PCI. The combination of severe
left ventricular dysfunction, particularly ADHF, with a
lesion(s) that is difficult to treat is an example of HR-PCI.

Need for an MCS device for HR-PCI depends upon
the hemodynamic condition of the patient at the time of
PCI, the anticipated risk of hemodynamic compromise
during the procedure, and the need for hemodynamic
support after revascularization. Risk calculators specif-
ically designed to assess the real-time need for MCS dur-
ing PCI do not exist and require further investigation.

Acute Myocardial Infarction

Although the vast majority of non-ST- and ST-segment
elevation myocardial infarction (NSTEMI and STEMI) pa-
tients can be safely and effectively treated using standard
techniques, selected patients may benefit from the
ded From: http://content.onlinejacc.org/ on 09/23/2015
unloading and hemodynamic effects of MCS, which may
serve to reduce myocardial oxygen consumption and
ischemia, and improve coronary perfusion through effects
on coronary blood flow. Due to the presence of active and
ongoing myocardial ischemia, NSTEMI and STEMI are
among the high-risk clinical scenarios for PCI. Several
factors make these patients high risk. Due to myocardial
ischemia, left ventricular (LV) diastolic and systolic
function is impaired and contributes to elevated in- tra-
cardiac filling pressures. Furthermore, PCI is associated
with the risk of thrombotic embolization and infarct
extension, which can lead to hemodynamic decompen-
sation. Finally, although standard therapy for STEMI is
rapid myocardial reperfusion, up to one-third of STEMI
patients do not experience effective reperfusion as
assessed by resolution of ST-segment elevation, and
reperfusion itself may cause myocardial damage (reper-
fusion injury) and life- threatening ventricular arrhyth-
mias (24). Whether MCS can reduce myocardial injury in
the setting of acute occlusion and subsequent reperfusion
for myocardial infarction is unknown.

Advanced Heart Failure and Cardiogenic Shock

Heart failure is a major cause of morbidity and mortality
worldwide. In the United States alone, an estimated 5.7
million adults 20 years or older have heart failure, of
whom nearly 50% have reduced LV ejection fraction (25).



FIGURE 2 Cardiac Effects of Mechanical Support

Illustrations of PV loops after activation of device therapy (gray loops). (A) Intra-aortic balloon pump (IABP) counterpulsation reduces both peak LV systolic

and diastolic pressures and increases LV stroke volume. The net effect is a reduced slope of arterial elastance (Ea2), (B) Percutaneous LV assist devices

(pLVAD: Impella and TandemHeart) significantly reduce LV pressures, LV volumes, and LV stroke volume. The net effect is a significant reduction in cardiac

workload. (C)Veno-arterial extra-corporealmembrane oxygenation (VA-ECMO)without a LV venting strategy increases LV systolic and diastolic pressure, while

reducing LV stroke volume. The net effect is an increase in arterial elastance (Ea).
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Cardiogenic shock is defined as systemic tissue hypo-
perfusion secondary to inadequate cardiac output despite
adequate circulatory volume and LV filling pressure.
Diagnostic hemodynamic criteria include: a systolic blood
pressure <90 mm Hg for >30 min; a drop in mean arterial
blood pressure >30 mm Hg below baseline, with a cardiac
index (CI) <1.8 L/min/m2 without hemodynamic support
or <2.2 L/min/m2 with support; and a pulmonary capillary
wedge pressure (PCWP) >15 mm Hg (26–28).

Among patients with advanced heart failure, techno-
logic advances have facilitated the use of surgically
implanted left ventricular assist devices (LVADs) as a
bridge to recovery, bridge to transplant, or for use as
permanent (destination) therapy (29). Biventricular assist
devices and the total artificial heart are also available as a
bridge to transplant for patients with biventricular heart
failure. As a result, the use of MCS devices as a treatment
strategy for patients presenting with advanced heart
failure or cardiogenic shock may be considered. The
primary goal of such a strategy is stabilizing a critically
ill patient before making a decision regarding durable
therapy. Moreover, MCSs may allow for myocardial
recovery, possibly obviating the need for destination
therapy.

The optimal timing of MCS insertion in ADHF and
cardiogenic shock remains unknown and significant
practice variability exists. For patients with advanced HF,
the Interagency Registry for Mechanically Assisted Cir-
culatory Support (INTERMACS) has defined seven clinical
profiles before implantation of a surgical VAD. Cardio-
genic shock is identified by INTERMACS profiles 1 and 2
: http://content.onlinejacc.org/ on 09/23/2015
patients, who either have acutely decompensated or are
failing to respond to aggressive inotrope therapy,
respectively (30). Both INTERMACS 1 and 2 patients may
be considered for temporary MCS support as a bridge to
recovery, surgical MCS, or cardiac transplantation.

Emerging Populations

Given the growing numbers of patients with compromised
cardiac function undergoing percutaneous coronary and
valve therapies new applications for this technology are
emerging. In the adult population, patients with severe,
nonoperable valve disease represent a rapidly growing
population; carefully selected patients may benefit from
cardiac support during percutaneous aortic valvuloplasty
or aortic valve replacement (31,32). Similarly, patients
referred for electrophysiologic procedures with severe
underling LV dysfunction may not tolerate sustained ar-
rhythmias during prolonged electrophysiological map-
ping and ablation procedures (33,34). Finally, patients
with right ventricular (RV) failure are at considerably
higher risk for morbidity and mortality when presenting
with AMI, ADHF, or CS. Use of MCS for RV or biventricular
support has been reported (35–37) and represents an
important new use for this technology. Although not yet
available in the United States, a dedicated RV support
device is under clinical evaluation (35,38).

Many children have or will develop disorders involving
the myocardium. The current therapeutic options for
circulatory support in the pediatric population are quite
limited. Primary indications for circulatory support in
pediatrics include heart failure related to congenital heart
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disease, cardiomyopathy and myocarditis, and cardiac
allograft failure. The most commonly used method of
circulatory support in children is ECMO. According to the
most recent Extracorporeal Life Support Organization
(ELSO) Registry Report from January 2013, a total of 6,225
pediatric patients (>31 days to 18 years) have been sup-
ported on ECMO since 1990 due to cardiac failure with a
65% survival from ECMO but only a 49% survival to
discharge (39). ECMO is able to provide complete circu-
latory support in a wide range of patients from newborns
to adults both with and without congenital heart disease
but is highly invasive and survival rates remain low at
40 to 50% (39). At this time, the only percutaneous device
approved in the United States for short-term cardiac
support in children is the IABP, with all other modalities
requiring surgical implantation. MCSs have been utilized
for circulatory support in older children successfully in
their current configuration (40,41). An important limita-
tion in this patient population is femoral vessel size.
Further device iterations may allow broader application.
AVAILABLE DEVICES AND/OR STRATEGIES

Intra-Aortic Balloon Pump

The IABP remains the most commonly used form of cir-
culatory support. The IABP has two major components, a
balloon catheter and a pump console to control the
balloon. The catheter itself is a double-lumen 7.5–8.0 Fr
catheter with a polyethylene balloon attached at its distal
end. One lumen is attached to the pump and is used to
inflate the balloon with gas. Helium is used because its
low viscosity facilitates rapid transfer in and out of the
balloon, and because it absorbs very rapidly in blood in
the case of balloon rupture. The second lumen of the IABP
is used for guidewire insertion and to transduce aortic
pressure.

Timing of balloon inflation and deflation is based on
electrocardiogram (ECG) or pressure triggers. The balloon
inflates with the onset of diastole, which roughly corre-
sponds with electrophysiologic repolarization or the
middle of the T-wave on the surface ECG. Following
diastole, the balloon rapidly deflates at the onset of LV
systole, which is timed to the peak of the R-wave on the
surface ECG. Poor ECG quality, electrical interference, and
cardiac arrhythmias can result in erratic balloon inflation/
deflation and make pumping inadequate or impossible.
Excessive tachycardia also mitigates the usefulness for
diastolic pressure augmentation, due to a reduction of the
time spent in diastole. Modern timing algorithms utilizing
fiberoptics can somewhat improve device performance
even in the setting of tachycardia or irregular pulse (42),
while larger volume balloons (i.e., 50 ml) have recently
been developed (43).
ded From: http://content.onlinejacc.org/ on 09/23/2015
Hemodynamic Effects

The IABP increases diastolic blood pressure, decreases
afterload, decreases myocardial oxygen consumption,
increases coronary artery perfusion, and modestly en-
hances cardiac output. The IABP provides modest ven-
tricular unloading but does increase mean arterial
pressure and coronary blood flow. Patients must have
some level of left ventricular function and electrical sta-
bility for an IABP to be effective, as any increase in cardiac
output is dependent on the work of the heart itself.
Optimal hemodynamic effect from the IABP is dependent
on several factors, including the balloon’s position in the
aorta, the blood displacement volume, the balloon diam-
eter in relation to aortic diameter, the timing of balloon
inflation in diastole and deflation in systole, and the
patient’s own heart rate, blood pressure and vascular
resistance (44).

Contraindications and Complications

Aortic valve regurgitation of greater than a mild degree
has traditionally been considered a contraindication to
the IABP as diastolic balloon inflation may worsen the
degree of regurgitation. Severe peripheral arterial or
aortic disease increases the risk of vascular complications
such as thromboembolism to the lower extremities or
visceral arteries (45).

The majority of complications from IABP use are
vascular and may include stroke (46), limb ischemia,
or vascular trauma. Thrombocytopenia from platelet
deposition on the IABP membrane (or use of heparin),
infection, and complications of immobility can occur in
patients who remain on prolonged IABP therapy. Trauma
to the aorta or ostia of visceral arteries, including
the renal arteries, can occur and result in severe life-
threatening complications such as bowel ischemia,
atheroembolism, and acute kidney injury.

There is variability in use of anticoagulation for IABP.
Many centers do routinely use anticoagulation, but others
do not, particularly with 1:1 pumping. No definitive
data exist to provide guidance. Each institution should
establish its protocol, with monitoring of bleeding and
ischemic complications.

Left Atrial to Aorta Assist Devices

Currently, only one left atrial—aorta assist device is
commercially available, TandemHeart. This is a percuta-
neously inserted circulatory assist device that pumps
blood extracorporeally from the left atrium (LA) to the
iliofemoral arterial system via a transseptally placed
left atrial cannula, thereby bypassing the LV (47). The
TandemHeart has four components: a 21-F transseptal
cannula, a centrifugal pump, a femoral arterial cannula,
and a control console. Regulatory status includes U.S.
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Food and Drug Administration (FDA) approval to provide
extracorporeal circulatory support for up to 6 h and CE
mark for use up to 30 days. It also has FDA approval to add
an oxygenator to the circuit allowing for concomitant LV
unloading and oxygenation.

The transseptal cannula is made of wire-reinforced
polyurethane with a large end-hole and 14-side holes
that allow for aspiration of left atrial blood. The arterial
perfusion cannula is available in sizes ranging from 15- to
19-F and is the main determinant of maximal flow. The
centrifugal blood pump contains a hydrodynamic bearing
that supports a spinning impeller. The pump has a motor
chamber and a blood chamber that are separated by a
polymeric membrane. The impeller is powered by a
brushless DC electromagnetic motor, rotating between
3,000 and 7,500 rpm. The external console controls
the pump and provides battery backup in case of power
failure. A continuous infusion of heparinized saline
flows into the lower chamber of the pump, which pro-
vides lubrication and cooling, and prevents thrombus
formation.

Hemodynamic Effects

During MCS with TandemHeart, both the LV and the
pump contribute flow to the aorta simultaneously
(thereby working in parallel, or tandem, rather than in
series). The redirection of blood from the LA reduces LV
preload, LV workload, filling pressures, wall stress, and
myocardial oxygen demand (47,48). The increase in
arterial blood pressure and cardiac output supports sys-
temic perfusion. The 19-F arterial cannula allows up to
5 L/min of flow whereas the 15-F cannula will allow up to
3.5 L/min. These values are additive to left ventricular
output through the aortic valve, although the contribu-
tion of the heart is typically reduced as MCS support is
increased due to changes in LV loading conditions (i.e.,
decrease in preload and increase in afterload). Coronary
flow is driven by the perfusion pressure (diastolic pres-
sure—right atrial pressure). With two pumps in parallel,
the aorta is perfused and pressured by both LV and the
TandemHeart, with the relative contribution of each
varying and dependent upon LV response to the pump.
Not infrequently LV contraction virtually ceases and
perfusion is pump-dependent with a flat mean arterial
pressure curve. Ventricular tachycardia or fibrillation
usually but not always renders LVADs ineffective due to
right ventricular failure (RVF) (49).

Contraindications and Complications

Adequate RV function or a concomitant RVAD is usually
necessary to maintain left atrial volume. There is limited
experience with the use of the TandemHeart device in the
setting of a ventricular septal defect or severe aortic
regurgitation (50,51). Severe peripheral arterial disease,
: http://content.onlinejacc.org/ on 09/23/2015
which is commonly present in elderly patients, may pre-
clude placement of the arterial cannula, or result in pe-
ripheral ischemia. In select cases with peripheral arterial
disease, a 5- or 6-F sheath can be placed antegrade into
the superficial femoral artery and spliced into the arterial
outflow cannula to provide limb perfusion. Profound
coagulopathies and bleeding diatheses such as heparin
induced thrombocytopenia or disseminated intravascular
coagulation are contraindications to use of TandemHeart
as are the presence of a right or left atrial thrombus.
Anticoagulation is important to prevent thromboembo-
lism or in situ thrombosis and few data with anticoagu-
lants other than unfractionated heparin are available
although anecdotal reports exist. Activated clotting times
about 300 are typically required. Alternative agents such
as bivalirudin or argatroban may be required in case of
heparin contraindications and their use is empiric.

Complications from the device are similar to other
percutaneous support devices and include vascular
trauma and limb ischemia (47). Expertise with trans-
septal puncture is required, particularly given the caliber
of the venous cannula. The relatively low numbers of
interventional cardiologists regularly performing trans-
septal puncture in their practice is an important barrier
to clinical application in many labs. Collaboration with
colleagues with transseptal experience and imaging
guidance using intracardiac or transesophageal echocar-
diography can facilitate training and safety of the trans-
septal puncture. Complications unique to transseptal
puncture, such as cardiac tamponade can occur; and these
risks are increased among anticoagulated patients. Other
possible complications include thrombo-or air-embolism
and hemolysis. Care must be taken to prevent dislodge-
ment of the left atrial cannula, particularly during patient
transport, or if the patient moves their leg, as dislodge-
ment into the right atrium will result in massive right to
left shunt and severe systemic desaturation. The cannula
may also migrate into a pulmonary vein leading to device
malfunction.

LV to Aorta-Assist Devices

The Impella is a nonpulsatile axial flow Archimedes-screw
pump designed to propel blood from the LV into the
ascending aorta, in series with the LV (47). Three versions
are now available. The 12-F (Impella 2.5) and 21-F (Impella
5.0) devices which provide maximal flow rates of 2.5 and
5.0 L/min, respectively, and a new 14-F device (Impella
CP) with an intermediate level of support of 3.0 to 4.0 L/
min. These devices are designed to be placed via the
femoral artery, either percutaneously (2.5 and CP) or with
a surgical cutdown (5.0). Alternate access sites such as the
subclavian artery have been described but are not
routinely used. The tip of the catheter is a flexible pigtail
loop that stabilizes the device in the LV with a low
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likelihood of perforation. The pigtail connects to a 12-F
(2.5 device), 14-F (CP device), or 21-F cannula (5.0 device)
that contains the pump inlet and outlet areas, motor
housing, and pump pressure monitor. Due to its size, the
Impella 5.0 requires a surgical cutdown for deployment
via the axillary or femoral artery. A possible advantage
of the axillary approach is the potential for long-term
support (52).

The proximal 9-F catheter shaft houses the motor
power leads and purge and pressure measurement lu-
mens. The catheter’s proximal end consists of a hub
for attachment of a console cable and side arms for
attachment of purge solution and pressure-measurement
tubing. As the Impella CP device has just recently become
available in the United States, the greatest experience to
date has been with the Impella 2.5 device.

Unlike the IABP, and comparable to the TandemHeart,
the Impella does not require timing, nor is a trigger from
an electrocardiographic rhythm or arterial pressure
needed. Similar to the TandemHeart, the device allows for
stability despite transient arrhythmias, but asystole and
ventricular fibrillation are poorly tolerated. The device
has received FDA approval for providing up to 6 h of
partial circulatory support whereas in Europe, the Impella
2.5 is approved for use of up to 5 days.

Hemodynamic Effects

The Impella pumps blood from the LV into the ascending
aorta, thereby unloading the LV and increasing forward
flow. It reduces myocardial oxygen consumption, im-
proves mean arterial pressure, and reduces pulmonary
capillary wedge pressure (53). The Impella 2.5 provides a
greater increase in cardiac output than the IABP but less
than the TandemHeart device. The more powerful Impella
CP and 5.0 devices are comparable to the TandemHeart
device in terms of support. Whether the Impella CP
further reduces native left ventricular stroke work and
wall stress at comparable flow rates to the TandemHeart
based on device inflow location is unknown. Similar to the
TandemHeart, adequate RV function or concomitant
RVAD is necessary to maintain LV preload and hemody-
namic support during biventricular failure or unstable
ventricular arrhythmias (49).

Contraindications and Complications

Use of the Impella is contraindicated in patients with a
mechanical aortic valve or left ventricular thrombus.
Aortic stenosis and regurgitation are relative contraindi-
cations, although reports of use in critical aortic stenosis
for hemodynamic rescue or to facilitate valvuloplasty
exist (54). The device should not be placed in patients
with severe peripheral arterial disease or who cannot
tolerate systemic anticoagulation. Theoretically, use of
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Impella may worsen right-to-left shunting and hypoxemia
in patients with a preexisting ventricular septal defect.

The most commonly reported complications of Im-
pella placement are limb ischemia, vascular injury, and
bleeding requiring blood transfusion (55). Vascular com-
plications common to all transfemoral procedures such
as hematoma, pseudoaneurysm, and arterial- venous fis-
tula, and retroperitoneal hemorrhage can occur with any
mechanical support device.

Hemolysis due to mechanical erythrocyte shearing has
been reported within the first 24 h of use in 5% to 10% of
patients, and may respond to repositioning the device
(55). Persistent hemolysis associated with acute kidney
injury is an indication for device removal.

Extracorporeal Membrane Oxygenation

ECMO provides cardiopulmonary support for patients
whose heart and lungs can no longer provide adequate
physiologic support. ECMO can be either veno-veno
(V-V) for oxygenation only or veno-arterial (V-A) for
oxygenation and circulatory support. In cases of biven-
tricular failure, V-A ECMO is the MCS of choice for
patients in cardiogenic shock and impaired oxygenation,
as it provides full cardiopulmonary support. ECMO
may be placed at the bedside without fluoroscopic
guidance.

Similar to a cardiopulmonary bypass circuit used in
cardiac surgery, V-A ECMO involves a circuit composed of
a centrifugal, nonpulsatile pump for blood propulsion,
and a membrane oxygenator for gas exchange. A venous
cannula drains deoxygenated blood into a membrane
oxygenator for gas exchange, and oxygenated blood is
subsequently infused into the patient via an arterial
cannula. Anticoagulation is required and unfractionated
heparin is the most commonly used agent. The degree of
anticoagulation is dependent on the type of membrane
oxygenator used, with ACTs ranging between 180 and
250. Venous and arterial cannulae can vary in size but
typically will be similar to TandemHeart (20-F venous,
17-F arterial). An experienced cardiac perfusionist is
required for management of the ECMO system, whereas
they are not required for the other devices.

While any standard ECMO or perfusion system avail-
able in the hospital may be used, new portable ECMO
systems such as CardioHelp (Maquet) have now attained
FDA approval and may find a useful role in catheterization
laboratories due to the relative ease of implantation and
initiation.

Hemodynamic Effects

V-V ECMO offers gas exchange without hemodynamic
support and is useful for conditions associated with
severe impairment of gas exchange with stable hemody-
namics such as ARDS, or rarely, pulmonary embolism.
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On the other hand, V-A ECMO provides systemic circula-
tory support with flows sometimes exceeding 6 L/min
depending on cannula sizes. However, due to high
myocardial oxygen demand (secondary to high filling
pressures and volume), V-A ECMO alone may not signifi-
cantly reduce ventricular wall stress (56). This has theo-
retic negative consequences on myocardial protection
unless the LV is vented or unloaded by concomitant IABP
or Impella (57). Metabolic derangement and deleterious
systemic effects of cardiogenic shock can often be cor-
rected within hours of initiation of ECMO.

Contraindications and Complications

Perfusionists familiar with device function and mainte-
nance should be readily available. Significant aortic
insufficiency may worsen with ECMO and promote
increased ventricular wall stress without a venting strat-
egy. Patients with severe peripheral arterial disease
should not undergo peripheral cannulation and central
cannulation should be considered. Anticoagulation
is necessary to prevent thrombosis of the membrane
oxygenator and varies dependent upon type. Typical
activated clotting times (ACTs) are between 180 and 250.
Each laboratory and hospital with a mechanical support
program should have target ACTs and regular monitoring
as part of its protocol. Alternative antithrombin agents
may be required if contraindications to unfractionated
heparin exist (58).

Complications of ECMO relate to bleeding and throm-
boembolic events, as well as hemolysis. Thromboembolic
events may occur both in the circuit or the patient
if adequate anticoagulation is not achieved. Cannulation
complications, common to all large cannulae, may in-
clude venous thrombosis or distal arterial ischemia.
Similar to TandemHeart, a second, antegrade, arterial
sheath inserted into the superficial femoral artery can
provide antegrade limb perfusion when needed. Stroke,
either embolic or hemorrhagic, can occur and care
must be taken to assure adequate but not excessive
anticoagulation.

Right-Sided Support

RVF is associated with increased morbidity and mortality
(59–67). Management of RVF focuses on reversing
the underlying cause, maintaining adequate preload,
reducing RV afterload, and enhancing RV contractility. In
RVF refractory to medical therapy, options include sur-
gical RVAD implantation, veno-arterial ECMO, cardiac
transplantation, or a total artificial heart (67). Historically,
percutaneous mechanical support for RVF has been
limited to the IABP, which only indirectly benefits RV
function by reducing LV afterload and enhancing coro-
nary perfusion. Since RV stroke work requires one-sixth
the energy expenditure of the LV (68), pumps that
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generate continuous flow with a minimal, low-amplitude
pulsatile component, may more closely approximate
native RV function.

Right ventricular support using two venous cannulas
and ECMO or a TandemHeart centrifugal pump providing
flow from the right atrium to main pulmonary artery has
been reported (69). Since the earliest reports, the Tan-
demHeart RV support device has been implanted for RVF
in the setting of AMI (70,71), post-LVAD implant (72), se-
vere pulmonary hypertension (73), and acute cardiac
allograft failure (74). Right internal jugular venous can-
nulation can be used and is particularly useful when the
distance from the femoral vein to the fifth intercostal
space exceeds 58 cm or if femoral venous access is limited
by infection, thrombosis, or an inferior vena caval filter
(75). Close monitoring for antegrade cannula migration is
essential and may present as hypoxic respiratory failure,
hemothorax, hemoptysis, decreased cardiac output, and
an acute decrease in device flow. TandemHeart is not
FDA-approved for use as an RVAD (36). The Impella RP, a
catheter-mounted axial flow pump is undergoing evalu-
ation for management of RVF (38). A potential advantage
of the Impella RP device is the need for only a single
venous access site. As experience with percutaneous RV
support devices grows, their role in the interventional
armamentarium of mechanical therapies for heart failure
will evolve and will require algorithms for risk stratifica-
tion, patient and device monitoring, and weaning
protocols.

Theoretical Comparison of
Hemodynamic and Myocardial Effects

The primary mechanism of benefit of MCS is to reduce
native LV stroke work and myocardial oxygen demand
while maintaining systemic and coronary perfusion.
Myocardial effects of reducing LV volume and pressure,
known as “LV unloading” have been well described (76).
Device options can be classified according to pump type
and include: volume-displacement pumps (IABP) and
continuous-flow pumps, which can be further grouped as
axial-flow (Impella) or centrifugal-flow (TandemHeart;
CentriMag; Rotaflow) MCSs.

By displacing blood volume in the descending aorta
during systole, the IABP generates a vacuum that is
replaced by blood from the LV. The net result is reduced
LV afterload, increased stroke volume, and a small
reduction in LV stroke work (77). However, the IABP is
functionally limited by balloon capacity, accurate timing,
and a dependence on native LV function. Whether newer
generation, larger capacity IABPs will provide more car-
diac support remains unknown.

With minimal native LV function continuous flow de-
vices actively reduce LV stroke work and myocardial ox-
ygen demand, and can maintain systemic perfusion.
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Output of these devices is determined by rotor speed and
is influenced by preload and afterload. Whether axial or
centrifugal flow pumps have different effects on LV
unloading has not been clearly established (78,79). Dif-
ferences between these two device types that impact
hemodynamic effects are the rotor sizes and the caliber of
the inflow and outflow segments.

Technical differences between axial and centrifugal
devices exist and relate to the location of device inflow
and outflow. The Impella is placed across the aortic valve
into the LV for direct unloading, while the TandemHeart
inflow cannula is placed across the interatrial septum into
the LA, thereby reducing LV stroke work indirectly by
reducing LV preload. No patient-level data exist currently
to suggest that any meaningful difference is observed
between unloading via the LA or the LV. In contrast,
ECMO, which displaces venous volume into the arterial
circulation, can significantly increase after-load on the
LV, thereby potentially reducing LV stroke volume,
increasing myocardial oxygen demand, and necessitating
“venting” of the LV (80). The major technical difference
is that to achieve device flow rates of 5 L/min, the
TandemHeart device requires venous and arterial can-
nulation with trans-septal puncture, while the Impella
5.0 pump requires surgical vascular access.

CLINICAL DATA AND GUIDELINES

The American College of Cardiology, the American
Heart Association, and the Society for Cardiovascular
Angiography and Intervention have published expert
consensus documents and clinical practice guidelines
referencing the use of left ventricular assist devices. The
most recent guidelines relating to percutaneous coronary
intervention and management of acute coronary syn-
dromes recommend consideration of hemodynamic sup-
port devices in the settings of HR-PCI and STEMI with
cardiogenic shock and for use in unstable patients being
transported from one hospital center to another (5,81).

Intra-Aortic Balloon Pump

In a retrospective study of 48 patients who underwent
primary PCI for acute myocardial infarction complicated
by cardiogenic shock, those that had an IABP placed
before PCI had a lower peak creatine kinase (CK), lower
in-hospital mortality and fewer major adverse cardiac
events than those with IABP inserted after PCI (82).
However, a nonrandomized study examined the use of
IABP in HR-PCI using the National Cardiovascular Data
Registry database and found no differences in overall
mortality and wide regional variation in the use of IABP
in this setting (83). Similarly, a meta-analysis of IABP use
in AMI found no benefit and potential harm, including
a higher risk of stroke (46). Finally, prospective
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randomized, controlled trials have failed to demonstrate
conclusive proof of IABP benefit. The IABP-SHOCK II Trial
(84) randomized 600 patients with cardiogenic shock
complicating AMI to IABP or no IABP, with all patients
expected to undergo early revascularization and to
receive optimal medical therapy. The vast majority (83%)
of IABP were inserted after the primary PCI procedure; at
30 days, there were 119 deaths (39.7%) in the IABP group
and 123 deaths (41.3%) in the control group (p ¼ 0.69), and
no significant differences in secondary clinical, labora-
tory, and resource utilization endpoints. Rates of major
bleeding, sepsis, and stroke were also similar between the
two groups (84).

Despite limited evidence of meaningful benefit, IABP
has received a Class IIa indication for use during STEMI
complicated by cardiogenic shock in the 2013 ACCF/AHA
guideline statement pertaining to STEMI management
(81). IABP use in STEMI without shock was not addressed
except to note that it may be useful for mechanical com-
plications of STEMI. Additionally, the current ACCF/AHA
guideline statement (5) and the most recent SCAI expert
consensus document (85) on PCI without on-site cardiac
surgery agree that the ability to provide IABP support
during transport of unstable patients is a requirement
for such centers.

The CRISP AMI (Counterpulsation to Reduce Infarct
Size Pre-PCI Acute Myocardial Infarction) trial was a
30-center randomized controlled trial that investigated
whether routine IABP placement immediately before
reperfusion reduced myocardial infarct size in patients
presenting with an anterior STEMI. The trial enrolled
337 patients in nine countries. No reduction in infarct
size as assessed by cardiac magnetic resonance imaging
was found 3 to 5 days following coronary intervention,
and no significant difference in survival was observed at
6-month follow-up between groups (86).

In a large study from the National Cardiovascular
Data Registry, IABP was used in only 10.5% of 181,599
high-risk interventions (defined unprotected left main
intervention, reduced left ventricular ejection fraction,
STEMI and cardiogenic shock) (83). IABP use in this
analysis was not associated with lower mortality and
varied widely between centers. Since all retrospective
nonrandomized studies are subject to significant selec-
tion and referral bias it remains unknown what the
outcomes of the 18,990 patients would have been had
an IABP not been used.

Finally, a prospective randomized clinical trial, BCIS-1,
enrolled 301 patients across 17 centers in the UK and
failed to show a mortality benefit of routine IABP
over provisional IABP use among those referred for
HR-PCI (87). On the other hand, routine IABP use signifi-
cantly reduced major procedural complications (1.3% vs.
10.7%, p < 0.001), particularly procedural hypotension.
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Procedural hypotension in the group randomized to no
IABP necessitated crossing over to IABP in 12% of pa-
tients. A long-term follow-up analysis of BCIS-1 out to 51
months showed a 34% relative reduction in all-cause
mortality with routine IABP use in patients with severe
ischemic cardiomyopathy undergoing HR-PCI (88).

Percutaneous Mechanical Circulatory Support

The opportunity for these systems to provide greater
hemodynamic support than IABP has been demonstrated
(89); however, there have been few randomized clinical
trials. In an analysis of 117 patients with severe cardio-
genic shock refractory to IABP and/or vasopressor
therapy, Kar et al. (89) observed significant improvements
in cardiac index, systolic blood pressure, and urine
output with TandemHeart support over an average
implant time of 6 days. In addition, pulmonary capillary
wedge pressure and serum creatinine levels decreased.
Despite these clinical and laboratory improvements,
30-day mortality remained high at 40% with significant
bleeding complications. Whether observed mortality
would have been higher without circulatory support
cannot be determined; however, it bears emphasis that
these were the sickest subgroup with true refractory
shock with almost one-half undergoing CPR during their
course. In a small open-labeled study, Burkhoff et al. (90)
randomized 33 patients within 24 h of developing
cardiogenic shock to treatment with an IABP or Tandem-
Heart. Compared with IABP, the TandemHeart device
resulted in a greater increase in cardiac index and
decrease in pulmonary capillary wedge pressure, but no
difference in severe adverse events or 30-day mortality.
Low statistical power due to small numbers precluded
definitive conclusions.

Similar hemodynamic improvements have been dem-
onstrated with the Impella 2.5 system in CS. Seyfarth
et al. (91) randomly allocated 25 patients with AMI and
cardiogenic shock to receive percutaneous support with
an IABP or Impella 2.5 device. Early increases in cardiac
index were greater with Impella (þ0.49 L/(min m2)
vs. þ0.11 L/min/m2; p ¼ 0.02). Similar to the TandemHeart
data, 30-day mortality was high 46%) and not different
between the two groups. Elective use of the Impella 2.5
system has been demonstrated to be safe in HR-PCI (92)
although an earlier study raised some concerns about
hemolysis and increased left ventricular volume after
device activation (93).

A large observational study of the Impella 2.5 device in
HR-PCI has been published (94). Most patients were
extremely high risk, including inoperable patients with a
high prevalence of chronic kidney disease, prior coronary
artery bypass grafting, and severe LV dysfunction, as
well as a high prevalence of NYHA class III to IV heart
failure. Despite these risk factors, procedural success was
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high with a 90% success rate with multi-vessel revascu-
larization and 8% rate of 30-day major adverse cardiac
events. Survival was 91% and 88% at 6 and 12 months,
respectively.

The PROTECT 2 trial is the largest single randomized
clinical trial of HR-PCI using MCS ever performed and
enrolled 452 symptomatic patients with complex three-
vessel disease or unprotected left main coronary artery
disease and severely depressed left ventricular function
to IABP (n ¼ 226) or Impella 2.5 (n ¼ 226) support for HR
PCI (95). The primary end point was a 30-day composite
of 11 adverse events and was not significantly different
between groups (Impella 35.1% vs. 40.1% IABP, p ¼ 0.227)
in the intent-to-treat population. The trial was stopped
early for futility. Primary endpoint differences were
greater in the per protocol population (34.3% Impella vs.
42.2% IABP, p ¼ 0.092). Impella provided superior he-
modynamic support in comparison with IABP, and at
90 days a trend toward decreased events was observed in
the intent-to-treat population (40.6% Impella vs. 49.3%
IABP, p ¼ 0.066). Differences were magnified in the per
protocol population (40.0% Impella vs. 51.0% IABP, p ¼
0.023) (90). A subsequent analysis redefining myocardial
infarction as the development of new Q waves or CKMB
more than eight times the upper limit of normal demon-
strated lower rates of events in patients treated with
Impella (composite event rate 37% vs. 49%, p ¼ 0.014),
respectively; and major adverse cardiac and cerebrovas-
cular events 22% vs. 31%, p ¼ 0.034) (96). Interestingly,
this is consistent with the late mortality reduction
demonstrated in BCIS-1 and has been the cause of intense
speculation. The potential mechanism for late benefit
may relate to more stable procedural hemodynamics
allowing for greater and more complete revascularization,
including allowing for more complex PCI procedures such
as rotational atherectomy (97).

No comparable randomized trial of HR-PCI with the
TandemHeart device exists. Alli et al. (98) reported a se-
ries of 54 patients using the TandemHeart for HR-PCI. All
patients were deemed high risk for surgery and under-
went complex PCI, with left main and multivessel stent-
ing performed in 64%. Procedural success was high at
97%, and 6-month survival was 87%. Besides demon-
strating the safety and feasibility of this device to allow
complex intervention in a very high-risk, non-surgical
group, hemodynamics improved during support, with a
decrease in cardiac filling pressures and increase in
cardiac output. No patient required hemodialysis but
vascular complications occurred in 13%. Other small
series of patients undergoing HR-PCI with TandemHeart
support have also been reported (99,100).

It is important to note that the sickest patients with
most significant hemodynamic compromise are clearly
not readily enrolled in large clinical trials. Clinical
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operators frequently empirically use commercially avail-
able MCS for hemodynamic support. Exclusion from
enrollment of those candidates who would have been the
most likely to benefit from enhanced MCS will decrease
the power of clinical trials to detect outcome differences.

Extra-Corporeal Membrane Oxygenation (ECMO)

ECMO is part of a broader category termed extracorporeal
life support (ECLS) (101). This term includes cardiopul-
monary support, extracorporeal CO2 removal, and ECMO.
A common cardiac indication for ECMO is in patients
with postcardiotomy syndrome and an inability to wean
from cardiopulmonary bypass. ECMO has also been
used to support patients with allograft failure following
cardiac transplantation, fulminant myocarditis, and se-
vere decompensated heart failure refractory to standard
therapies. As a bridge to definitive therapy, ECMO has
also been used in patients with cardiogenic shock from
acute coronary syndromes and as a bridge to transplant
with or without the use of other ventricular assist devices.
Multiple reports of ECMO being instituted for cardiac ar-
rest (102,103) exist, and the institution of ECMO for car-
diovascular collapse and cardiac arrest is rapidly growing
in popularity (104). A major advantage is the relative ease
of implementation, but a disadvantage is the need for
specialized perfusion expertise and nursing. Nichol et al.
reviewed 84 studies of ECMO instituted for cardiogenic
shock or cardiac arrest and showed an overall survival
of 50% (105).

Analysis of the ELSO (Extracorporeal Life Support Or-
ganization) registry for ECMO used in the setting of adult
cardiac arrest demonstrated a 27% survival to hospital
discharge with the need for renal replacement therapy
increasing odds of mortality (106). A more recent experi-
ence similarly found 49% survival with use of either MCS
or ECMO in cardiogenic shock, with ongoing cardiopul-
monary resuscitation a risk factor for increased mortality
(107). There are no large randomized controlled trials with
use of ECMO.

RECOMMENDATIONS FOR USE

When to Consider Mechanical Circulatory Support

For historic reasons, positive inotropes and vasopressors
have been first-line therapy for hemodynamic instability
and cardiogenic shock. Given the lack of data showing
benefit with these agents, and the potential for harm with
coronary and peripheral vasoconstriction, MCS may be
considered in carefully selected patients with severe he-
modynamically unstable cardiovascular presentations.
Table 1 lists the most common scenarios in which MCS
may be used to provide hemodynamic support and bridge
to recovery or definitive therapy. Table 2 provides a guide
for clinical use for HR PCI.
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Timing of MCS insertion depends on the indication for
use. For cardiogenic shock, a support device should be
inserted as soon as possible, particularly if initial attempts
with fluid resuscitation and pharmacologic support fail
to show any significant hemodynamic benefit, and before
PCI (110). Early initiation of MCS support can mitigate
the consequences of systemic hypoperfusion, worsening
ischemia, and declining cardiac function. Hemodynamic
evaluation and monitoring with right heart catheteriza-
tion is helpful in most cases.

For prophylactic support during elective, high-risk
procedures, the device should be placed before the start
of the intervention. If a patient is hemodynamically
stable post-procedure, the device can usually be removed
immediately. Patients who remain hemodynamically un-
stable post-procedure or those with cardiogenic shock
may remain on percutaneous support until their hemo-
dynamic status improves. Although these devices are
labeled for as little as 6 h of use, they have been suc-
cessfully employed for days or even weeks in selected
cases of prolonged shock. A team approach with in-
put from advanced heart failure specialists and VAD/
transplant surgeons can facilitate decision making.

MCS Device Selection

Multiple factors must be considered when choosing MCS
including: the hemodynamic condition of the patient,
hemodynamic impact of the device, technical consider-
ations including ease and rapidity of insertion, and the
ultimate goals of support. In emergent situations (e.g.
STEMI), IABP is often selected as the quickest and most
familiar way to obtain some degree of hemodynamic
stabilization, especially in the setting of AMI with pump
failure. The initial effects of the IABP on coronary blood
flow may be particularly desirable in this setting as well.
However, the IABP often requires concomitant pharma-
cologic support to maintain hemodynamics in those with
pump failure, and recent data raise questions about the
efficacy and safety of IABP support in this setting
(46,86,111,112). Operators familiar with the Impella may
elect to insert this device instead in such patients, in or-
der to minimize or obviate pressor use, reduce myocardial
oxygen demand and improve systemic perfusion, thereby
avoiding systemic shock. In experienced centers, inser-
tion of an Impella 2.5 or CP device may be as rapid as an
IABP.

If hemodynamic compromise occurs despite appropriate
medical management and/or IABP, one may consider more
powerful hemodynamic support devices such as an axial or
centrifugal flow pump. Use of these devices requires an
experienced team and may not be possible under all cir-
cumstances, particularly with adverse conditions. With
experience the Impella 2.5 or CP can be inserted rapidly
and provide a higher magnitude of support compared to



TABLE 1 Suggested Indications for Percutaneous MCS

Indication Comments

Complications of AMI Ischemic mitral regurgitation is particularly well-suited to these devices as the hemodynamic disturbance is usually
acute and substantial. Acutely depressed LV function from large AMI during and after primary PCI is an increasing
indication for temporary MCS use. Cardiogenic shock from RV infarction can be treated with percutaneous right
ventricular support.

Severe heart failure in the setting of
nonischemic cardiomyopathy

Examples include severe exacerbations of chronic systolic heart failure as well as acutely reversible cardiomyopathies
such as fulminant myocarditis, stress cardiomyopathy, or peripartum cardiomyopathy.
In patients presenting in INTERMACS profiles 1 or 2, MCS can be used as a bridge to destination VAD placement or
as a bridge to recovery if the ejection fraction rapidly improves (108).

Acute cardiac allograft failure Primary allograft failure (adult or pediatric) may be due to acute cellular or antibody-mediated rejection, prolonged
ischemic time, or inadequate organ preservation.

Post-transplant RV failure Acute RV failure has several potential causes, including recipient pulmonary hypertension, intraoperative injury/
ischemia, and excess volume/blood product resuscitation. MCS support provides time for the donor right ventricle
to recover function, often with the assistance of inotropic and pulmonary vasodilator therapy (109).

Patients slow to wean from cardiopulmonary
bypass following heart surgery

Although selected patients may be transitioned to a percutaneous system for additional weaning, this is rarely done.

Refractory arrhythmias Patients can be treated with a percutaneous system that is somewhat independent of the cardiac rhythm. For recurrent,
refractory, ventricular arrhythmias, ECMO may be required for biventricular failure.

Prophylactic use for high risk PCI Particularly in patients with severe LV dysfunction (EF <20% to 30%) and complex coronary artery disease involving a
large territory (sole-remaining vessel, left main or three vessel disease) (94,95,98).

High-risk or complex ablation of ventricular
tachycardia

Similar to HR-PCI, complex VT ablation can be made feasible with percutaneous support. MCS use allows the patient
to remain in VT longer during arrhythmia mapping without as much concern about systemic hypoperfusion.

High-risk percutaneous valve interventions These evolving procedures may be aided with the use of MCSs.
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an IABP. For patients who continue to deteriorate despite
such support, TandemHeart using the larger arterial
outflow cannula, ECMO, or surgical cutdown for delivery of
an Impella 5.0 should be considered.

Operators must consider the advantages and disad-
vantages of initially selecting a device to achieve higher
cardiac output by inserting it at the beginning of a high-
risk procedure or at the early stages of ADHF or shock,
and perhaps obviating peripheral and coronary vasocon-
striction that accompany vasopressor therapy. In patients
with cardiogenic shock and mechanical complications,
the TandemHeart or Impella 5.0 offers the greatest car-
diac output and hemodynamic support while the indi-
vidual is evaluated for surgery. Inotropes may still be
required to support RV function after placement of a left-
sided support device. Patients with biventricular failure
and/or impaired oxygenation may require ECMO support.
Biventricular support with two different devices (e.g.,
TandemHeart for RV support and Impella or IABP for LV
support) has also been reported.

Early MCS implantation before the patient requires
multiple vasopressors is theoretically attractive but re-
quires testing in controlled trials. Insertion of an Impella
TABLE 2 Suggested Schema for Support Device in High-Risk PC

Patient With Left Main, Last Remaining
Conduit, or Severe Multivessel Disease

Anticipated
Noncomplex PCI

Normal or mildly reduced left ventricular function None

Severe left ventricular dysfunction (EF <35%) or recent
decompensated heart failure

IABP/Impella
as back up

A suggested schema for use of support devices for high-risk PCI based upon clinical and anatomic circ
potential benefit of MCS.
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or TandemHeart device should permit completion of a
revascularization procedure without hypotension and
systemic hypoperfusion, reduce vasoconstriction more
quickly, and achieve a greater likelihood of improved
late survival. Such an approach is supported by recent
guidelines (5).

Gaps in Knowledge

Given the limited prospective, randomized, multicenter
data with MCS use, these recommendations must be
tempered with understanding of knowledge gaps. The
effects of percutaneous MCS on reducing LV stroke work
and myocardial oxygen demand in acute myocardial
infarction are poorly understood. MCSs may reduce
infarct size and/or ischemic complications, but available
clinical data so far does not support this indication.

In patients undergoing HR-PCI, more data are needed
on subgroups of patients that may benefit from support
(e.g., based on clinical or angiographic characteristics).
Likewise, for patients with AMI complicated by cardio-
genic shock, the limitations of IABP use are apparent.
A phase III, multicenter, three-arm study comparing
outcomes with IABP, MCS or neither, with power to
I

Anticipated Technically Challenging or Prolonged PCI

IABP/Impella as back up

Impella or TandemHeart, choice dependent upon vascular anatomy, local
expertise, and availability. ECMO for concomitant hypoxemia or RV failure.

umstances. The greater the likelihood of hemodynamic compromise or collapse the greater the
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determine clinical outcome differences not only in
short-term hemodynamics but also long-term survival, is
needed. With the re-emergence of ECMO at many centers,
the trade-offs between complete cardiopulmonary sup-
port versus complexity of intervention and monitoring
and potential for complications and impaired myocardial
protection need to be defined. On the other hand, partial
LV support may offer benefits over current MCS tech-
nology in terms of ease of application and patient
acceptability.

The potential advantages of these devices over phar-
macologic therapy such as inotropes, with known adverse
effects on myocardial oxygen consumption and cardiac
rhythm, need to be determined in controlled studies.
Finally, more development and clinical data are needed
on RV support devices.

Cost Effectiveness

The support devices discussed in this document are
expensive, with acquisition, disposable, and operating
costs greatly exceeding that of the IABP. Costs incurred
during both the initial hospitalization and any subsequent
readmissions need to be considered. This is particularly
true as most patients are older, have multiple comorbid-
ities, and may experience prolonged hospital length of
stays and high readmission rates. A recent European
study modeled cost-effectiveness of an Impella in com-
parison with IABP using decision trees bases upon rates of
endpoints reported in the literature. The Impella was
associated with an incremental quality-adjusted life-year
(QALY) between 0.22 (with Euro registry data) and
0.27 (with U.S. registry data). The incremental cost-
effectiveness ratio (ICER) of the device varied between
V38,069/$52,063 (with Euroregistry data) and V31,727/
$43,390 (with U.S. registry data) per QALY compared with
IABP, which is within conventionally accepted parame-
ters of cost effectiveness (113).

A second study utilizing 2010–2011 MedPAR data
evaluated the cost-effectiveness of emergency MCS for
cardiogenic shock (N ¼ 883) compared with surgical
ECMO or VAD therapy (N ¼ 305). MCS was associated
with better survival to hospital discharge (56% vs. 42%,
p < 0.001), reduced LOS (13.2 and 17.9 days, respectively,
p ¼ 0.055) and significantly lower inpatient costs ($90,929
and $144,257, respectively, p < 0.001) (114).

Future Directions: Myocyte Protection and Recovery

Another potential use of ventricular support is myocyte
preservation during acute ischemic insult (115). Ventric-
ular unloading may reduce myocardial infarct size
through enhanced hemodynamics, preserved energetics,
and activation of cardioprotective mechanisms (48,116).
Despite limited unloading potency, some animal infarct
model studies found improved myocyte recovery with
ded From: http://content.onlinejacc.org/ on 09/23/2015
IABP use (117,118). However, as described above, the
CRISP-AMI study (101) found no difference in mean final
infarct size between STEMI patients (not complicated by
cardiogenic shock) who received routine IABP compared
with those who did not. Animal studies of LV unloading
with Impella appeared more favorable (56,119–121) and a
preliminary clinical report of Impella for infarct size
reduction in the STEMI setting was encouraging (122). The
MINI-AMI (Minimizing Infarct Size with Impella 2.5
Following PCI for Acute Myocardial Infarction) trial
sought to measure this benefit, but this study was
terminated before completion (123). The TandemHeart
device will be studied in a trial of similar design entitled
TRIS (TandemHeart To Reduce Infarct Size) (Howard C,
personal communication). This trial will test the hypoth-
esis that left ventricular unloading before primary PCI will
reduce infarct size. No human subject studies of ECMO
have been announced to test efficacy in myocardial
salvage but portable ECMO devices that have recently
become available may have an important role to play in
the future.

CONCLUSIONS AND SUMMARY

The availability of percutaneous MCS has broadened
therapeutic options for patients that require hemody-
namic support. A variety of devices are now available,
each with specific technical and clinical nuances.

Unfortunately, definitive clinical evidence is in many
cases either unavailable or controversial. We provide the
following consensus-based summary statements based
upon the anticipated hemodynamic effects and risks,
clinical outcomes data as well as knowledge gaps.

1. Percutaneous MCS provides superior hemodynamic
support compared to pharmacologic therapy. This is
particularly apparent for the Impella and Tandem-
Heart devices. These devices should remain avail-
able clinically and be appropriately reimbursed.

2. Patients in cardiogenic shock represent an extremely
high risk group in whom mortality has remained
high despite revascularization and pharmacologic
therapies. Early placement of an appropriate MCS
may be considered in those who fail to stabilize
or show signs of improvement quickly after initial
interventions.

3. MCS may be considered for patients undergoing
high-risk PCI, such as those requiring multivessel, left
main, or last patent conduit interventions, particu-
larly if the patient is inoperable or has severely
decreased ejection fraction or elevated cardiac filling
pressures.

4. In the setting of profound cardiogenic shock, IABP is
less likely to provide benefit than continuous flow
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pumps including the Impella CP and TandemHeart.
ECMO may also provide benefit, particularly for
patients with impaired respiratory gas exchange.

5. Patients with acute decompensated heart failure
may benefit from early use of percutaneous MCS
when they continue to deteriorate despite initial
interventions. MCS may be considered if patients are
candidates for surgically implanted VADs or if rapid
recovery is expected (e.g., fulminant myocarditis or
stress-induced cardiomyopathy).

6. When oxygenation remains impaired, adding an
oxygenator to a TandemHeart circuit or use of ECMO
should be considered based upon local availability.

7. There are insufficient data to support or refute the
notion that routine use of MCSs as an adjunct to pri-
mary revascularization in the setting of large acute
myocardial infarction is useful in reducing reperfu-
sion injury or infarct size. Exploratory studies are
underway.
: http://content.onlinejacc.org/ on 09/23/2015
8. MCSs may be used for failure to wean off cardiopul-
monary bypass, considered as an adjunct to high-risk
electrophysiologic procedures when prolonged hy-
potension is anticipated, or rarely, for valvular
interventions.

9. Severe biventricular failure may require use of both
right- and left-sided percutaneous MCS or veno-
arterial ECMO. Certain patients may respond to
LVAD implantation with inotropes and/or pulmonary
vasodilators to support the right heart. MCS may also
be considered for isolated acute RVF complicated by
cardiogenic shock.

10. Registries and randomized controlled trials comparing
different strategies in different clinical scenarios are
critically needed.

11. Early analyses suggest cost-effectiveness of MCS for
emergent use in comparison to surgical ECMO or VAD
support, and for elective use in comparison to IABP.
Further data are necessary.
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