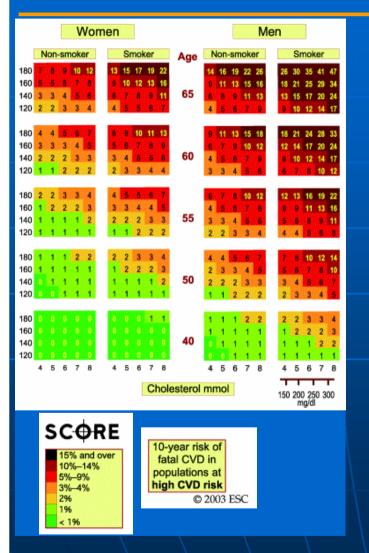
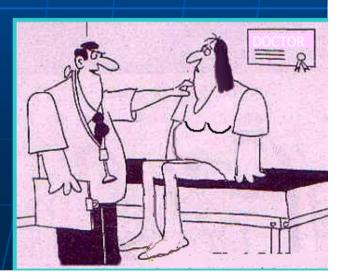

CHEMIOTERAPIA E CARDIOTOSSICITÀ

Leonardo Campiotti Dipartimento di Medicina Clinica Università dell'Insubria


Incidence Rates Of Congestive Heart Failure (CHF) Among Framingham Heart Study Subjects By Gender And Age


Potential Causes Of Heart Failure

New cardiovascular risk factor

- sex
- age
- family history for CAD
- smoking
- hypertension
- diabetes
- dyslipidemia
- obesity
- sedentariness
- chemotherapy

Dimension of Phenomenon

New cases of tumors in Europe (2008) $\approx 2.000.000$ " in the Western world (2008) $\approx 11.000.000$ Estimate 2010 $\approx 15.000.000$

Treated with anthracycline every year (USA): ≈ 60.000 pts

≈ 10.000.000 pts

CT-induced cardiotoxicity

It's becoming increasingly important in the modern medical practice in parallel with:

- increasing number of patients treated with CT
- development of new drugs with possible cardiotoxic effect
- more aggressive CT
- increased survival time after CT
- higher number of patient recovering from cancer

Agenti antineoplastici e cardiotossicità

- Antracicline (doxorubicina, daunorubicina)
- Mitoxantrone
- Agenti alchilanti (ciclofosfamide,cisplatino,mitomicina,busulfan)
- Antimetaboliti (fluorouracile, citarabina)
- Agenti antimicrotubuli (alcaloidi della vinca, etoposide)
- Anticorpi monoclonali(trastuzumab,bevacizumab)
- Piccole molecole (sunitinib, dasatinib)

Alterazioni cardiovascolari e farmaci biologici

BEVACIZUMAB	SI
CETUXIMAB	NO
ERLOTINIB	NO
GEFITINIB	NO
IMATINIB	SI
LAPATINIB	SI
SORAFENIB	SI
SUNITINIB	SI
PANITUMUMAB	NO
TEMSIROLIMUS	NO
TRASTUZUMAB	SI

Cardiotossicità: fattori di rischio

- fattori legati al farmaco: combinazione con altri chemioterapici sequenza di somministrazione modalità di somministrazione dose cumulativa somministrata

- fattori legati al paziente: età > 60 anni

sesso F
RT mediastinica
pregressa chemiotp con Ant
valvulopatie e/o cardiomiopatie pregresse
ipertensione arteriosa
disordini elettrolitici
predisposizione genetica

Kremer LC, et al. Ann Oncol 2002

Fattori di rischio clinico-dipendenti

NSABP B-31 Potential Risk Factors for CHF

Risk Factors		2	No. of Pts	No. with CHF	P value	Relative risk (95% CI)
	< 50 50-59		441	9 (2.0%)	0.03	Ref. group
Age			276	15 (5.4%)		2.7 (1.2-6.2)
Control of	60)	133	7 (5.3%)		2.7 (1.0-7.3)
History of	N	•	503	17 (3.4%)	0.40	40.000.00
smoking	Yes		321	14 (4.4%)	0.46	1.3 (.65-2.7)
Left-sided tumor & radiation		No	526	21 (4.0%)	0.50	.80 (.38-1.7)
		Yes	313	10 (3.2%)	0.59	
Family history of cardiac disease		No	759	28 (3.7%)	0.73	1.3 (.40-4.3)
		Yes	61	3 (4.9%)		

J Clin Oncol 2005;23:7811-19

Fattori di rischio clinico-dipendenti

NSABP B-31 Potential Risk Factors for CHF

Risk Factors		No. of Pts	No. with CHF (%)	P value	Relative Risk (95% CI)
Hypertension medications	No	664	21 (3.2%)	0.07	2.0 (.95 - 4.3)
	Yes	161	10 (6.2%)	0.07	
Diabetes medications	No	797	31 (3.9%)	0.40	0
	Yes	28	0 (0.0%)	0.42	
Hyperlipidemia medications	No	759	30 (4.0%)	0.50	.44 (.06 - 3.2)
	Yes	60	1 (1.7%)	0.52	
Baseline LVEF	50-54	62	9 (14.5%)	.0001	Ref. group
	55-64	410	13 (3.2%)		.20 (.0947)
	65+	378	9 (2.4%)		.15 (.0639)

Alterazioni cardiovascolari

- Ipertensione arteriosa
- Ischemia miocardica
- Riduzione della LVEF
- Aumento dell'intervalli QT all'ECG.
- Aritmie

	Stage	Patient Description
		Hypertension
	High risk for developing heart failure	Coronary artery disease
4	(HF)	Diabetes mellitus
	A PUTY	Family history of cardiomyopathy
		Cardiotoxic chemotherapy
		Previous myocardial infarction
	Asymptomatic HF	Left ventricular systolic dysfunction
		Asymptomatic valvular disease
100	<i>₹</i>	Known structural heart disease
k	Symptomatic HF	Shortness of breath and fatigue
0	A	Reduced exercise tolerance
		Marked symptoms at rest despite maximal medical therap
1	Refractory end-stage HF	(eg, those who are recurrently hospitalized or cannot be
		safely discharged from the hospital without specialized
000		interventions)

Tipi di cardiotossicità da chemioterapici

Type I (eg, Doxorubicin)

Cellular death

Biopsy change (vacuoles, necrosis, myofibrillar disarray)

Damage starts with the first administration

Cumulative dose-related

Permanent and irreversible damage (myocyte death)

Risk factors:
Combination CT
Prior/concomitant RT
Age
Previous Cardiac disease
Hypertension

Type II (eg, Trastuzumab)

Cellular dysfunction

No typical anthracycline-like biopsy change

Not-cumulative dose related Predominantly reversible (myocyte dysfunction)

Risk factors:

Prior/concomitant anthracyclines

or paclitaxel

Age

Previous cardiac disease

Obesity (BMI >25 kg/m²)

Ewer and Lippman, JCO 2005;2900-02

Meccanismi patogenetici

- Danno da radicali liberi (antracicline)(la glutatione perossidasi è soppressa dalla doxorubicina;si ha un danno alle membrane mitocondriali, al reticolo endoplasmatico e agli acidi nucleici;massivo efflusso di calcio nel citoplasma con deplezione dei depositi del reticolo sarcoplasmatico) (viene altresì invocata una disfunzione adrenergica con downregulation dei recettori beta e istaminici)
- Danno dell'endotelio (ciclofosfamide) (con necrosi miocardica, edema interstiziale, trombosi endocapillare; pericardite)
- Interferenza con il metabolismo energetico (fluorouracile)(meccanismo vasospastico endotelina mediato che risulta elevata durante il trattamento)
- Anticorpi monoclonali diretti contro i recettori delle tirosin-chinasi o dei loro sistemi energetici

Dosaggi e incidenza

- Doxorubicina, daunorubicina: modifica ECG 20-30%, aritmie 0,5-3% (dose variabile); CHF 0.14% < 400 mg/m2, 7% a 550 mg/m2; insorgenza tardiva 18-65%
- Cyclophosphamide: CHF > 150 mg/kg 7-25% negli adulti e 5% nei bambini; > 1.5 g/m2/die 25% CHF (versamenti pleurici e pericardici)
- Fluorouracile: 1.6-68% angina pectoris, IMA, ipotensione, aritmie con dosi > 800 mg/m2
- Citarabina: > 3 g/m2 pericardite, CHF
- Alcaloidi della vinca : 25% non in relazione alla dose, con IMA, edema polmonare, modifica dell'ECG
- Idarubicina: cardiotossicità per dosi cumulative > 220 mg/m2

Classificazione della cardiotossicità da antracicline

ACUTA: subito dopo la prima somministrazione

- età più avanzata
- singola grossa dose
- spesso reversibile
- -palpitazioni, dolore toracico, anomalie ECG, aritmie SV e V, ipotensione, miopericardite

CRONICA: mesi o anni dopo l'ultima somministrazione

- a) ad esordio precoce:
- durante o entro 1 aa dal termine tp
- incidenza 1.6-2.1%
- più maligna
- sintomi e segni clinici di SCC
- b) ad esordio tardivo:
- dopo 1 aa dal termine tp
- incidenza a 6 aa: 65%
- più benigna
- 4 volte più frequente sesso F
- sintomi e segni clinici di SCC

Lipshultz SE et al. BJH 2005; 131:561-578

Storia naturale della Cardiotossicità da Antracicline

- Immediate injury (↑troponin T)
 - Irreversible damage occurs
 - Cardiac biopsy abnormalities
- Period of compensation (but vulnerability)
 - Biopsy normalizes (cell loss is difficult to appreciate)
 - Patients may be asymptomatic (the heart has reserves)
 - Ejection fraction remains grossly normal, but
 - Cardiac reserves are diminished
 - Vulnerable to sequential stress

Storia naturale della Cardiotosscità da Antracicline

- Period of inability to compensate (the problematic 5%)
 - Previously thought to be the beginning of the problem!
 - Abnormal resting ejection fraction
 - Vulnerable to sequential stress
 - May persist for many years
- End-stage heart failure (often progressive and fatal)

Trastuzumab

- Trastuzumab (TRZ) has led to a significant breakthrough in the treatment of HER2-positive breast cancer patients. At present, it is considered part of the standard regimen for the treatment of this disease in both metastatic and adjuvant settings.
- Mowever, the use of TRZ has resulted in an unexpectedly high incidence of cardiac toxicity, usually occurring as asymptomatic left ventricular dysfunction or as overt heart failure.

Trastuzumab

- TRZ-induced cardiotoxicity (TIC) has been reported to be as high as 27% when TRZ is administered in association with anthracyclines (AC).
- It has also been reported that the clinical outcome of this form of cardiotoxicity is more favorable than that induced by AC.
- In most patients (60-80%) LVEF improves after withdrawal of TRZ and beginning of heart failure (HF) therapy.

	Recovery 25 (60%)	No Recovery 17 (40%)	<i>P</i> Value
Age	50 ± 8	56 ± 11	0.047
Hypertension	7 (10)	4 (21)	NS
Diabetes	0 (0)	0 (0)	NS
Hypercholesterolemia	1 (4)	0 (0)	NS
Current or Past Smokers	6 (24)	3 (18)	NS
LVEF Before HRZ Therapy	60 ± 4	61 ± 4	NS
LVEF at TRZ Withdrawal	44 ± 6	37 ± 6	0.001
ACEI + BB Association	22 (88)	8 (47)	0.01
TNI + Baseline	0 (0)	7 (41)	0.001
TNI + During TRZ Treatment	9 (36)	17 (100)	< 0.001

Adapted from Cardinale D et al. J Clin Oncol. 2010;28:3910-6.

Cardiotossicità Sorafenib e Sunitinib

- Il meccanismo con cui possono indurre cardiotossicità non è del tutto noto
- Tossicità reversibile
- Sono agenti multi-target
- Entrambi agiscono inibendo la patway del gene HIF → inibizione dell'angiogenesi e della proliferazione cellulare.

I prodotti del gene HIF sono mediatori fisiologici della risposta miocardica a ischemia acuta o cronica, rimodellamento miocardico e permeabilità vascolare

Cardiotossicità Sorafenib e Sunitinib

- Inibizione di VEGF → riduzione della densità capillare, disfunzione cardiaca, fibrosi e scompenso cardiaco
- Disaccoppiamento della fosforilazione mitocondriale nei cardiomiociti
- Sunitinib inibisce S6 chinasi ribosomiale → rilascio di BCL2
 - →rilascio di Citocromo c →apoptosi e deplezione di ATP
 - → disfunzione ventricolare
- Sorafenib inattiva RAF1 e BRAF → dilatazione e riduzione della contrattilità miocardica con conseguente apoptosi e fibrosi delle cellule miocardiche

Ipertensione arteriosa

	% (G3-G4)	% (all Grades)
BEVACIZUMAB	17	34
SORAFENIB	4	17
SUNITINIB	10	30

Ipertensione arteriosa

Gli inibitori dell'angiogenesi possono indurre ipertensione riducendo la densità capillare periferica, e questo si traduce in un sovraccarico funzionale che i cardiomiociti non sono in grado di gestire per una concomitante tossicità dei farmaci, diretta o mediata, sul microcircolo coronarico. Questo sarebbe di per sé sufficiente a spiegare eventi ischemici, aritmici, e il declino della funzione contrattile

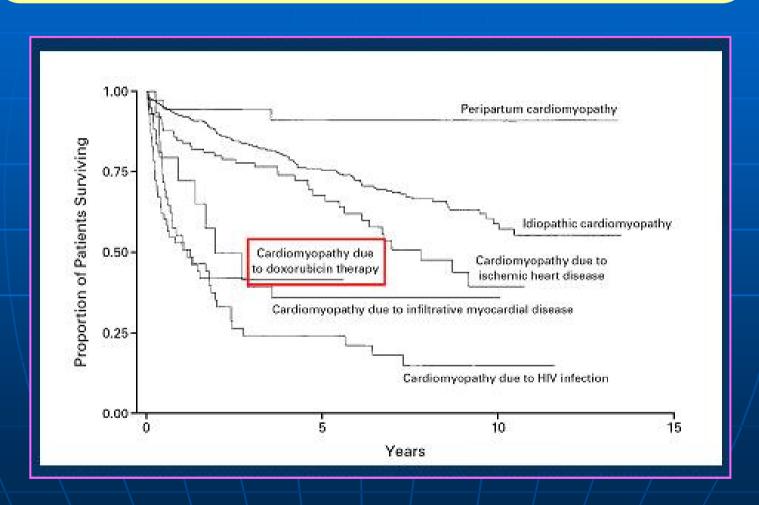
Cardiotossicità Bevacizumab

- Eventi rari
- Incidenza di insufficienza cardiaca 3.5%
- Diversi meccanismi
 - Ipertensione instabile e mal controllata, ipertensione polmonare
 - ✓ Inibizione di VEGF → riduzione della densità capillare, disfunzione cardiaca, fibrosi e scompenso cardiaco
 - Disaccoppiamento della fosforilazione mitocondriale nei cardiomiociti
- Tachicardia sopraventricolare (eventi trombotici)

Dasatinib / nilotinib

- QTc prolongation: Both Baseline EKG,
 Close K+ and Mg++ monitoring
- Past pancreatitis, severe diabetes: Nilotinib
 C/I
- Hypertension, COPD, CCF, chest wall injury, asthma, pneumonia, GI bleeding, autoimmune disorders, aspirin: Dasatinib C/I

Dasatinib and nilotinib Effect on QTcF interval


- QTcF interval > 500 msec: <1% of patients
- QTcF interval increase from baseline > 60 msec: 1-2% of patients
- No episodes of torsades de pointes
- Normal cardiac volunteer study of Nilotinib: Not pro-arrhythmogenic

Triossido arsenico

• QT interval prolong from baseline

Episodes of torsades de pointes

PROGNOSI

Linee guida oncologiche internazionali

- Non forniscono una precisa definizione di cardiotossicità
- Ma definiscono una perdita di 10 punti percentuali di FEVS, unitamente ad una riduzione sotto il limite di normalità (50%), una indicazione alla sospensione della CT

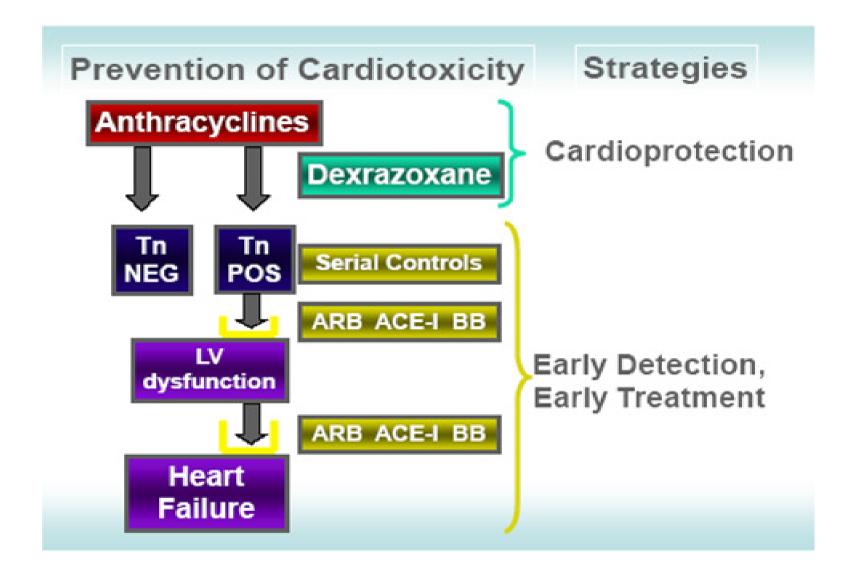
Fattori di rischio aggiuntivi:

Età avanzata, sesso femminile, ipertensione, diabete, pregressa radioterapia, alte dosi di AC, plurimi agenti chemioterapici

POTENZIALI STRATEGIE PREVENTIVE

Dose cumulativa
 limitazioni

Schedule modificate settimanali infusioni


Rilascio selettivo liposomi

Agenti cardioprotettivi

carvedilolo ace-inibitori suppl nutrizionali

bone marrow cells

Wexler, Semin Oncol 1998:25: 86

cardioprotezione

- Dexrazosano: è un chelante dei metalli pesanti e legandosi al ferro intracellulare inibisce la conversione degli ioni superossidi e dell'idrogeno perossidato in radicali liberi superossidi
- Negli studi effettuati finora verso placebo, tutti a breve termine, il dexrazosano ha mostrato un indubbio effetto cardioprotettore. Non si hanno però dati sulla protezione a lungo termine, e inoltre sembra interferisca con l'efficacia delle antracicline.
- AUMENTATO RISCHIO LMA E MIELODISPLASIA (nota AIFA luglio 2011)
- Ubidecarenone, Carnitina, Probucol, Sodio cromoglicato

DOXORUBICINA CONVENZIONALE VERSUS MYOCET

Doxorubicin (271 pts) vs liposomalencapsulated doxorubicin (250 pts) (2 trials meta-analysis)

- Clinical Heart Failure: statistically significant difference in favour of liposomal (5.1% vs 0.8% p=0.02)
- Clinical and subclinical heart failure: statistically significant in favour of liposomal (24.7% vs 9.2% p<0.0001)
- Response rate, progression-free, overall survival: no evidence for significant difference
- Adverse events: significantly better for liposomal (Ineutropenia, nausea/vomiting and diarrhea)

Doxorubicin vs epirubicin (5 trials meta-analysis)

(515 pts) (521 pts)

Clinical Heart Failure: no evidence for significant difference

Some suggestion of a lower rate of clinical heart failure in favour of epirubicin

- Response rate, progression-free, overall survival: no evidence for significant difference
- Adverse events: significantly better for epirubicin (leukopenia and nausea/vomiting)

Effect of ACE-Inhibitors on Mortality Reduction Patients with LVD or Heart Failure

	Mortality			
Trial	ACE-I	Controls	RR (95% CI)	
Chronic CHF				
CONSENSUS I	39%	54%	0.56 (0.34 - 0.91)	
SOLVD (Treatment)	35%	40%	0.82 (0.70 - 0.97)	
SOLVD (Prevention)	15%	16%	0.92 (0.79 - 1.08)	
Post- MI				
SAVE	20%	25%	0.81 (0.68 - 0.97)	
AIRE	17%	23%	0.73 (0.60 - 0.89)	
TRACE	35%	42%	0.78 (0.67 - 0.91)	
SMILE	6.5%	8.3%	0.78 (0.52 - 1.12)	
Mean	21%	25%		

Effect of Beta Blockade on Outcome Heart Failure and Post-MI LVD Patients

Study	Drug	HF Severity	Target Dosage (mg/day)	Outcome
US Carvedilol ¹	Carvedilol	Mild/ Moderate	6.25 to 25 bid	\downarrow 48% disease progression ($P = .001$)
CIBIS-II ²	Bisoprolol	Moderate/ Severe	10 qd	\downarrow 34% mortality ($P < .0001$)
MERIT-HF ³	Metoprolol Succinate	Mild/ Moderate	200 qd	\downarrow 34% mortality ($P = .0062$)
COPERNICUS ⁴	Carvedilol	Severe	25 bid	\downarrow 35% mortality ($P = .0014$)
CAPRICORN ⁵	Carvedilol	Post-MI LVD	25 bid	\downarrow 23% mortality ($P = .031$)

¹ Colucci WS. Circulation. 1996;94:2800–2806.

² CIBIS-II Investigators. Lancet.1999;353:9-13.

³ MERIT-HF Study Group. *Lancet.* 1999;353:2001–2007.

⁴ Packer M. N Engl J Med. 2001;344:1651–1658.

⁵ The CAPRICORN Investigators. *Lancet.* 2001;357:1385–1390.

RUOLO PROTETTIVO DEGLI ACE-INIBITORI

Prevention of High-Dose Chemotherapy-Induced Cardiotoxicity in High-Risk Patients by Angiotensin-Converting Enzyme Inhibition

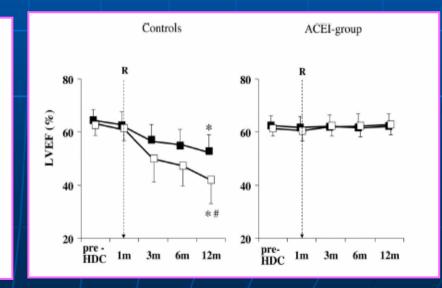

Daniela Cardinale, MD; Alessandro Colombo, MD; Maria T. Sandri, MD; Giuseppina Lamantia, MD; Nicola Colombo, MD; Maurizio Civelli, MD; Giovanni Martinelli, MD; Fabrizio Veglia, PhD; Cesare Fiorentini, MD; Carlo M. Cipolla, MD

TABLE 3. Echocardiographic Parameters During the Study Period

	Baseline	Randomization	3 mo	6 mo	12 mo	₽*
EDV, mL						
ACEI group	101.7±27.4	100.2±26.1	98.1±27.8	97.5±24.5	101.1±26.4	0.045
Control subjects	103.2±20.1	103.9±21.0	106.4±21.0	107.1±23.9	104.2±25.6	
ESV, mL						
ACEI group	38.6±10.8	38.7±10.4	37.3±10.9	37.4±10.3	38.5±11.2	< 0.001
Control subjects	38.8±10.2	40.5±12.2	49.8±17.6	51.8±16.9	54.4±20.1†	
LVEF, %						
ACEI group	61.9±2.9	61.1±3.2	61.9±3.3	61.6±3.9	62.4±3.5	< 0.001
Control subjects	62.8±3.4	61.8±4.3	54.2±8.1	51.9±7.9	48.3±9.3†	

EDV indicates end-diastolic volume; ESV, end-systolic volume.

tP<0.001 vs baseline.

^{*}Probability value for repeated-measures analysis of variance.

Gruppo ACEI

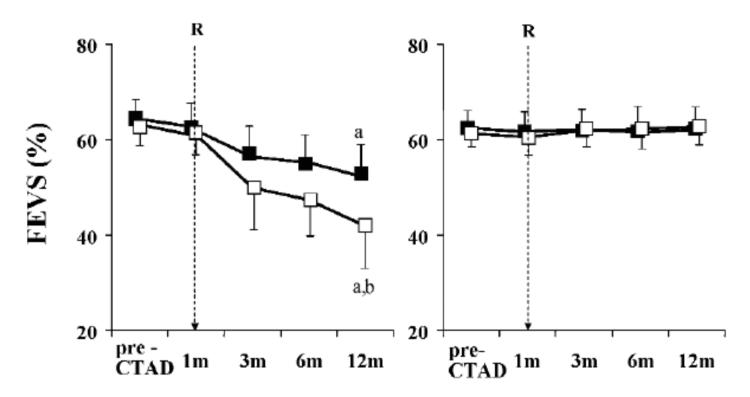


Figura 5

Andamento della frazione d'eiezione ventricolare sinistra (FEVS) durante il periodo di follow up nel gruppo controllo (grafico a sinistra) e nel gruppo ACEI (grafico a destra), nei pazienti con (quadrati chiari) o senza (quadrati scuri) incremento persistente (dopo 1 mese) di Troponina I.

R = randomizzazione. CTAD = chemioterapia ad alte dosi.

a = p<0,001 vs basale e randomizzazione per tutte le fasi successive;

b = p<0,001 vs pazienti senza aumento persistente di Troponina I

Cardinale D, Colombo A, Sandri MT, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation 2006; 114: 2474-81.

MONITORAGGIO CARDIACO

Strategie convenzionali:

- ELETTROCARDIOGRAMMA

alterazioni ST-T, aritmie SV e V, anomalie QRS, dispersione QTc bassa sensibilità e specificità

- ECOCARDIOGRAMMA

EF, funz diastolica, dimensioni V influenzata da pre e post-carico buona sensibilità, bassa specificità associata a radionuclidi o dobutamina

- BIOPSIA ENDOMIOCARDICA V DX

alta sensibilità e specificità invasiva errori di campionamento mancanza di expertise universali

Morandi P et al, Ital Heart J 2003;4:655-667

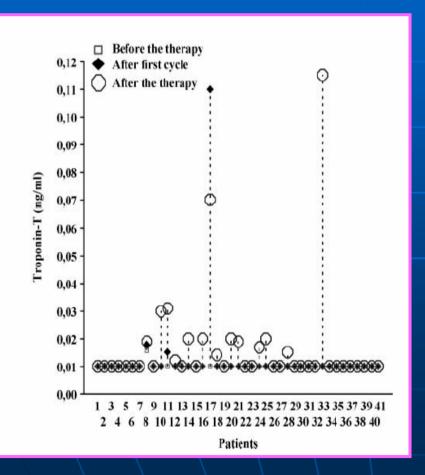
STRATEGIE FUTURE

Possibili futuri markers

- HEART RATE VARIABILITY
 - analisi spettrale e domini di tempo da ECG Holter
 - indice indipendente di mortalità e morbilità in CM post-ischemica
 - ulteriori studi per la specificità

Van de Graaf WT et al, Heat 1999;81:419-23

Peptidi natriuretici


- NT-proBNP
- Troponine

CONDIZIONI DI INCREMENTO DELLE TROPONINE DIVERSE DALLA CARDIOPATIA ISCHEMICA

- Acute rheumatic fever
- Amyloidosis
- Cardiac trauma (including contusion, ablation, pacing, firing, cardioversion, catheterization, cardiac surgery)
- Cardiotoxicity from cancer therapy
- Congestive heart failure
- Critically ill patients
- Diabetic ketoacidosis
- End-stage renal failure
- Glycogen storage disease type II (Pompe's disease)

- Heart transplantation
- Hemoglobinopathy with transfusion hemosiderosis
- Hypertension, including gestational
- Hypotension, often with arrhythmias
- Hypothyroidism
- Myocarditis/Pericarditis
- Postoperative noncardiac surgery
- Pulmonary embolism
- Sepsis

cTnT E DISFUNZIONE DIASTOLICA

cTnT levels			Age (years	s)
	E/A ratio		≤44	>44
No change		Decreased	3	9
n = 27 E/A ra	E/A ratio		21.4 %	69.2 %
	L/A rado		11	4
		No change	78.6 %	30.8 %
Increased			3	5
n = 14	E/A ratio	Decreased	42.9 %	71.4 %
	L/A Taut		4	2
		No change	57.1 %	28.6 %

Table 6. The relation between E/A ratio and cTrT levels (P<0.05)

La troponina come precoce marcatore di danno miocardico

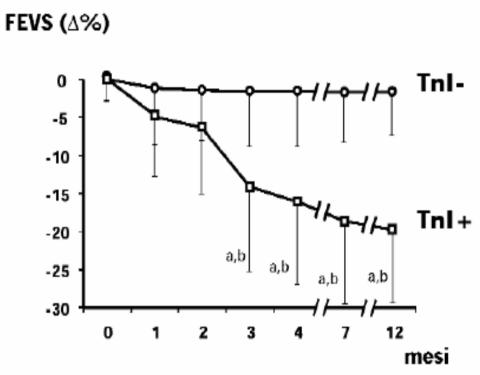


Figura 1

Andamento della frazione d'eiezione ventricolare sinistra (FEVS) durante il periodo di osservazione nei pazienti con Troponina I positiva (TnI+) e negativa (TnI-).

a = p < 0.001 vs basale (mese 0); b = p < 0.001 vs pazienti Tnl-

Cardinale D, Sandri MT, Colombo A, et al. Prognostic value of Troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 2004; 109: 2749-54.

SITI DI PRODUZIONE/SECREZIONE E MECCANISMI DI ATTIVAZIONE DEI PEPTIDI NATRIURETICI CARDIACI

ATRIO

ANP BNP

Distensione dell'atrio

ATTIVAZIONE NEURO-ORMONALE

VENTRICOLO BNP ANP

Distensione del ventricolo **Ipertrofia**

(Ischemia)

Conclusioni

- La cardiotossicità da antiblastici non è da considerarsi solo come un problema di ridotta FE
- Le manifestazioni sono molteplici e multiformi
- Spesso poco conosciute per quanto riguarda le nuove molecole

Conclusioni

 L'unica vera strategia è il loro riconoscimento precoce in fase subclinica

QUINDI

"...il medico deve usare tutti i sensi per capire e curare un paziente, ma sicuramente il più importante è il buon senso"

(Achille Venco)

QUINDI

